Представление многочлена базисными элементами

© Н.Д. Дикусар

e-mail: dnd@jinr.ru, Лаборатория информационных технологий, ОИЯИ, Дубна

Разработан метод базисных элементов (МБЭ), в котором алгебраический многочлен представляется в форме разложения по трем квадратичным и одной кубической параболам – базисным элементам. В задачах полиномиальной аппроксимации и сглаживания МБЭ-представление позволяет понизить вычислительную сложность алгоритмов и повысить их устойчивость к ошибкам за счет выбора структуры внутренней связи между переменной и управляющими параметрами.

Введение. Повышение эффективности и устойчивости методов сглаживания экспериментальных данных и аппроксимации сложных функций является одной из центральных задач, как в научных исследованиях, так и в области развития современных технологий, где требуется обработка больших объемов информации в режиме реального времени.

Качество результатов аппроксимации дискретного набора данных существенно зависит от выбора базисных полиномов, равносильных в теоретическом плане, но различных по форме. Выбор той или иной формы представления связан, как правило, с устойчивостью и точностью вычислений или с общей эффективностью алгоритмов.

Понятие обусловленности является ключевым при работе с полиномами. При выполнении операций с полиномами высокой степени матрица нормальных уравнений становится плохо обусловленной, вследствии чего возникает потеря точности, приводящей к обесцениванию результатов вычислений [1, 2]. Хотя такого рода трудности устраняются с помощью полиномов Чебышева, методов ортогонализации и др., разработка методов, менее чувствительных к обусловленности задачи остается весьма актуальной.

В рамках идей 4-точечных преобразований [3, 4] получена новая форма представления многочлена $P_n(x)$ по четырем базисным элементам – одной кубической и трем квадратичным параболам (метод базисных элементов – МБЭ). Представление $P_n(x)$ в виде геометрических примитивов обладает рядом преимуществ в плане повышения точности и устойчивости вычислений в решении задач полиномиальной аппроксимации и сглаживания [5, 6, 7].

1. Метод базисных элементов. Суть метода состоит в преобразовании многочлена

$$P_n(x; \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \qquad (1)$$

в другую форму: $P_n(x; \mathbf{a}) \rightarrow P_{n \downarrow k}(x; \alpha, \beta, \mathbf{r}_i) =$

 $\sum_{i=0}^{k} Q^{i} \mathbf{w}^{T} \mathbf{r}_{i}, где k$ – максимальная степень $Q (k = \lfloor n/3 \rfloor, \lfloor a \rfloor$ – наибольшее целое $\leq a.$), $Q^{i} \mathbf{w}^{T}$ - базисные функции, а $\mathbf{r}_{i} = [r_{i\alpha}, r_{i\beta}, r_{i0}]^{T}$ – коэффициенты. Базисные элементы $Q(x; \alpha, \beta)$ и $\mathbf{w}^{T} = [w_{1}, w_{2}, w_{3}], w_{j} = w_{j}(x; \alpha, \beta)$ зависят от непрерывных параметров α и β , функционально связанных с переменной x. Такая модель приносит выгоду при решении многих задач в области алпроксимации функций и обработки экспериментальных данных.

Определение. Функции

$$w_1 = \frac{-\tau(\tau - \beta)}{\alpha(\beta - \alpha)},$$
$$w_2 = \frac{\tau(\tau - \alpha)}{\beta(\beta - \alpha)}, w_3 = \frac{(\tau - \alpha)(\tau - \beta)}{\alpha\beta}, \quad (2)$$

$$Q(\tau; \alpha, \beta) = \tau(\tau - \alpha)(\tau - \beta), \qquad (3)$$

 $\tau, \alpha, \beta \in R, \alpha \neq \beta \neq 0$, где $w_1 + w_2 + w_3 = 1$, называются базисными элементами. Уравнение полиномов 0-й, 1-й и 2-й степеней, проходящих через точки $(\alpha, r_{\alpha}), (\beta, r_{\beta}), (0, r_0)$ (при $x_0 = 0$) в форме $P_{2\downarrow0}(x)$ принимает вид

$$\Pi(x;\alpha,\beta,\mathbf{r}) = \mathbf{w}^T \mathbf{r} = r_\alpha w_1 + r_\beta w_2 + r_0 w_3, \quad (4)$$

где $\Pi(\nu; \alpha, \beta, \mathbf{r}) = r_{\nu}$, а уравнение кубической параболы $P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ в форме $P_{3\downarrow 1}$:

$$S = \Pi(x; \alpha, \beta; \mathbf{r}) + \theta Q(x; \alpha, \beta), \quad x, \alpha, \beta \in R,$$

где θ - параметр. Представление полинома $P_n(x; \mathbf{a})$ в форме $P_{n \perp k}$ для n > 3 выражает

Теорема I. Для заданной тройки чисел $\{x_{\alpha}, x_{\beta}, x_0\} \in R$ и четверки базисных элементов $\{w_1, w_2, w_3, Q\}$, определенных формулами (2), (3) многочлен $P_n(x; \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ может быть представлен в виде

$$P_{n\downarrow k}(x;\mathbf{r}_i) = \Pi_0 + \Pi_1 Q + \Pi_2 Q^2 + \dots + \Pi_k Q^k,$$
(5)

где $\Pi_i = \Pi_i(\tau; \alpha, \beta, \mathbf{r}_i), \ k = \lfloor n/3 \rfloor, \ \tau = x - x_0, \ \alpha = x_\alpha - x_0, \ \beta = x_\beta - x_0, \ a \ \mathbf{r}_i^T = [r_{i\alpha}, r_{i\beta}, r_{i0}]$ – вектор, образованный из ординат, расположенных на линиях $\tau = \alpha, \ \tau = \beta$ и $\tau = 0; \ i = \overline{0, k}.$

Доказательство теоремы основано на вычислении $r_{i\nu}$ по значениям $P_n(x)$, $\Pi(x)$, Q(x) и их производных до k-го, 2-го и 3-го порядков соответственно в точках $\nu = \alpha, \beta, 0$. Для этого используются:

1) формулы представления $\{x^j\}_{j=1}^n$ в виде [4, 7] $x^j = \Pi(x; \alpha, \beta) + Q(x; \alpha, \beta)u_{j-3}(x)$, где $u_j(x)$ – элементарные симметрические функции $u_j = (x + \alpha)u_{j-1} - \alpha x u_{j-2} + \beta^{j-3}, u_0 = u_1 = u_2 = 0; j = 3, n;$

2) формулы редуцированных многочленов [5] $U_i(x; \alpha, \beta) = \Pi_i(x; \alpha, \beta, \mathbf{r}_i) + Q(x)U_{i+1}(x)$, где $\mathbf{r}_i = [U_{i\alpha}, U_{i\beta}, U_{i0}]^T$, $i = \overline{1, k}$ и

3) лемма о вычислении значений $U_i(x)$ в точках $x = \alpha, x = \beta, x = 0$ [5]:

<u>Лемма</u>. Значения $U_{i\nu} \equiv U_i(\nu)$ определяются через $U_{(i-1)\nu}, U'_{(i-1)\nu}, \nu = \alpha, \beta, 0$ и параметры α, β и $\gamma = \beta - \alpha$ в виде

 $U_{i\alpha} = -U_{(i-1)\alpha}^{+}/(\alpha\gamma) + U_{(i-1)\beta}/(\beta\gamma^{2}) - U_{(i-1)0}/(\alpha^{2}\beta),$

 $\begin{array}{l} U_{i\beta} &= & U_{(i-1)\alpha}/(\alpha\gamma^2) + U_{(i-1)\beta}^+/(\beta\gamma) - \\ U_{(i-1)0}/(\alpha\beta^2), \\ U_{i0} &= & -U_{(i-1)\alpha}/(\alpha^2\gamma) + U_{(i-1)\beta}/(\beta^2\gamma) + \\ U_{(i-1)0}^+/(\alpha\beta), \end{array}$

где $U_0(x) \equiv P'_n(x), U^+_{(i-1)\nu} = U'_{(i-1)\nu} + \lambda_{\nu}U_{(i-1)\nu},$ а λ_{ν} выражаются через параметры α и β . Выше приведенные формулы получаются при раскрытии соответствующих пределов

$$U_{i\nu} = \lim_{x \to \nu} \{ [U_{(i-1)}(x) - U_{(i-1)}(x) - U_{(i-1)}(x)] \}$$

 $\Pi_{(i-1)}(x;...,\mathbf{r}_{(i-1)})]/Q(x;...)\}, i = \overline{2,k}, \nu = \alpha, \beta, 0.$ <u>Следствие 1</u>. Наряду с (5) полином $P_{n\downarrow k}$ может быть представлен также в виде

а) конструкции типа матрешки:

$$P_{n\downarrow k}(x) = \Pi_0 + Q[\Pi_1 + Q[\Pi_2 + Q[\dots + Q[\prod_k]\dots]],$$

$$\underbrace{U_1}_{U_k}$$

$$\underbrace{U_1}_{U_k}$$
(6)

б) векторной формы:

$$P_{n\downarrow k}(x; \mathbf{r}_i) = \sum_{i=0}^k \mathbf{b}_i^T \mathbf{r}_i = \sum_{i=0}^k \sum_{j=1}^3 b_{ij}(x; \alpha, \beta) r_{ij},$$
(7)

где $\mathbf{b}_i = Q^i \mathbf{w} = [Q^i w_1, Q^i w_2, Q^i w_3]^T = [b_{i1}, b_{i2}, b_{i3}]^T.$

<u>Следствие 2</u>. В случае приближения функции $f(x) \in C^{(k)}[a,b]$ полиномом $P_{n\downarrow k}$ для вычисления \mathbf{r}_i требуется $k = \lfloor n/3 \rfloor$ производных $f^{(i)}, i = 0, k$ и производные от $\Pi_i(x)$ и Q(x) до второготретьего порядков в точках $x_{\nu}, \nu = \alpha, \beta, 0$.

С геометрической точки зрения, коэффициенты $r_{i\nu}$ в (7) являются ординатами точек на линиях $x = x_{\nu}$, $\nu = \alpha, \beta, 0$, причем $r_{i\nu} = \Pi_i(\nu)$. В зависимости от расположения $r_{i\nu}$ на координатной плоскости, линии однозначно определяются одной, двумя или тремя точками - горизонтальная прямая, наклонная прямая или квадратичная парабола.

 Аппроксимация функций. Приближение непрерывной функции полиномом в достаточно малой окрестности точки всегда надежно, тогда как в более широком промежутке оно требует большой осторожности. Использование (5) – (7) для локального приближения имеет свои особенности. Разложение f(x) по степеням Q = $(x - x_{\alpha})(x - x_{\beta})(x - x_{0})$ аналогично разложению f(x) по степеням $(x - x_0)$. В формуле Тейлора значения производных и самой функции вычисляются в точке x_0 , а в формулах $P_{n\downarrow k}$ используются значения $f(x), f^{(i)}(x)$ и значения базисных элементов $\Pi_i(x), Q(x)$ и их производных в трех точках $x = x_{\alpha}, x = x_{\beta}$ и $x = x_0$. При этом весьма важно подчеркнуть, что элементы w_1, w_2, w_3 и Qзависят от параметров α и β , изменяющих базис, тогда как в формуле Тейлора базис фиксирован. Рассуждения при доказательстве теоремы I, позволяют сформулировать аналогичную теорему о локальном приближении функции:

Теорема II. Если действительная функция $f(\overline{x}), x \in [a, b]$ одного переменного имеет $k = \lfloor n/3 \rfloor$ непрерывных производных в точках x_{α}, x_{β} и $x_0, x_{\alpha} < x_0 < x_{\beta}$, причем точки x_{α} и x_{β} расположены вблизи границ [a, b], соответственно, то f(x) может быть представлена в виде

$$f(x) = \sum_{i=0}^{\kappa} Q^i \mathbf{w}^T \mathbf{r}_i + R_{k+1}, \qquad (8)$$

где \mathbf{r}_i вычисляются по формулам леммы на основе f, w_1 , w_2 , w_3 и Q и параметров α и β . При этом остаточный член равен $R_{k+1} = Q^{k+1}U_{k+1}(x;\alpha,\beta)$.

<u>Замечание</u>. В разложении (8) базисные элементы зависят от параметров, изменение которых влияет на величину R_{k+1} . В этом случае α и β являются параметрами регулирования (управления), и от их выбора зависит точность аппроксимации.

<u>Пример 1.</u> Аппроксимация $sin(x), x \in [-\pi, \pi],$ $(\alpha = -\pi, x_0 = 0, \beta = \pi, \gamma = 2\pi)$ полиномом $P_{5\downarrow1}(x)$. Так как $\mathbf{r}_0 = [0, 0, 0]^T, sin'_{-\pi} = sin'_{\pi} = -1$ и $sin'_0 = 1$, то по формулам леммы найдем $\mathbf{r}_1 = -\pi^{-2}[1/2, 1/2, 1]^T$. После подстановки этих значений в формулу редуцированных многочленов, с учетом (2), получим $sin(x) \approx \mathbf{w}^T \mathbf{r}_0 + Q \mathbf{w}^T \mathbf{r}_1$ $= -Q(w_1 + w_2 + 2w_3)/(2\pi^2) = -Q(1 + w_3)/(2\pi^2),$ или

 $sin(x) \approx -x(x^2 - \pi^2)(2\pi^2 - x^2)/(2\pi^4)$. При этом $max|sin(x) - Q\mathbf{w}^T\mathbf{r}_1| < max|sin(x) - (x - x^3/6 + x^5/120)|, x \in [-\pi, \pi].$

3. Структура и свойства $P_{n\downarrow k}$. Использование модели $P_{n\downarrow k}(x; \alpha, \beta, \mathbf{r}_i)$

$$f(x) \approx \mathbf{w}^T \mathbf{r}_0 + \sum_{i=1}^k \mathbf{b}_i^T \mathbf{r}_i, \qquad (9)$$

в задачах аппроксимации $f(x) \in C_{[a,b]}$ и сглаживания экспериментальных данных имеет ряд преимуществ при реализации соответствующих процедур.

Рис. 1: Графики x^i и $Q^i w_3(x; \alpha, \beta), i = 3, 5, 8, 11;$ кривые 8 и 11 увеличены в 2 и 4 раза, соответственно (слева). Графики $lg|x^i/Q^iw_3|; x \in [-1, 1]$ (справа).

Модель (9) обладает полезными свойствами, из которых наиболее важными являются:

1°. Возможность изменять базис $\mathbf{b}_i = Q^i \mathbf{w}$ через параметры α и β , т.е. влиять на обусловленность нормальной матрицы. Абсолютные значения функций $\{x^i\}$ и $\{Q^i w_j\}$ различаются на порядки, что видно по графикам функций $lg|x^i/Q^i w_3|, x \in [-1,1], i = 3,5,8,11, (\alpha = -0,95, \beta = 0,75)$ (рис. 1).

2°. МБЭ-модель имеет две составляющие – фиксированную ($\mathbf{w}^T \mathbf{r}_0$) и свободную ($\mathbf{b}_i^T \mathbf{r}_i$). Фиксированная составляющая ($\mathbf{w}^T \mathbf{r}_0$) использует данные вместо кэффициентов при меньших степенях x с возможностью вычислений по параметрам α и β , что существенно расширяет рамки алгоритмизации расчетов. Например, в зависимости от выбора параметров x_0 , α и β , модель (9) можно использовать как в статическом режиме (все параметры фиксированы), так и в динамическом (хотя бы один из параметров изменяется синхронно с x) [6].

3°. Выбор "сопровождающих троек"из входных данных $\{(x_{\nu}, r_{0\nu})\}, r_{0\nu} = \tilde{f}_{\nu}, \nu = \alpha, \beta, 0$ обеспечивает естественную привязку к кривой f. В зависимости от дисперсии входных ошибок, ординаты $r_{0\nu}$ приравниваются либо соответствующим значениям функции $(r_{0\nu} \equiv f_{\nu})$ либо их оценкам $(\hat{r}_{0\nu})$, полученным усреднением \tilde{f}_i по нескольким соседним точкам.

4°. Дробно-рациональная зависимость базисных функций от параметров позволяет *повышать устойчивость к ошибкам* и *понижать вычислительную сложность* аппроксимационных алгоритмов (для подходящих α и β знаменатели в w_j подавляют ошибки в оценке $\hat{\mathbf{r}}_0$, что обеспечивает устойчивость трансформации данных). Например, модель с полиномом 5-й степени преобразуется к виду

$$\underbrace{\tilde{f}(x) - \mathbf{w}^T(x;\alpha,\beta)\hat{\mathbf{r}}_0}_{\tilde{u}(x)} \approx \mathbf{b}^T(x;\alpha,\beta)\mathbf{r}_1, \qquad (10)$$

где $\hat{\mathbf{r}}_0$ – оценка реперных ординат, \mathbf{b} – новый базис 5-й степени, а \mathbf{r}_1 – вектор неизвестных коэффициентов. При этом происходит устойчивое преобразование ошибки $e_{\tilde{f}}(x) \xrightarrow{\mathbf{e}_0} e_{\tilde{u}}(x)$, где $\mathbf{e}_0 = [e_{\alpha}, e_{\beta}, e_0]^T$ – ошибки в оценке $\hat{\mathbf{r}}_0$, а число коэффициентов (\mathbf{r}_1) сокращается до трех

$$\tilde{u}(x) = \mathbf{b}^T(x;\alpha,\beta)\mathbf{r}_1 + e_u(x). \tag{11}$$

Таким образом, при работе с матрицами число арифметических операций для аппроксимации данных $\tilde{u}(x) = f(x) - \mathbf{w}^T \hat{\mathbf{r}}_0 - e(x)$ сравнимо с числом операций в случае квадратичной модели.

4. Сглаживание данных. МБЭ-модель обеспечивает устойчивость вычислений к ошибкам, что подтверждается ниже, на примере сравнения результатов МНК-сглаживания точек сигнала $S(x), x \in [0,7]$ полиномом 11 степени по выборке $\{\tilde{S}_k = S(x_k) + e_k\}_{k=1}^{300}, (e \sim N(0,\sigma), \sigma = 0, 1)$ для моделей $P_{11}(x; \mathbf{a})$ и $P_{11\downarrow3}(x; \alpha, \beta, \mathbf{r}_i)$, при $x_0 = 3, 7, \alpha = -3, 3, \beta = 3, 1.$

Обозначим нормальные матрицы через $\mathbf{C}_{12\times 12}$ и $\mathbf{B}_{12\times 12}$ соответственно для моделей $S(x) \approx P_{11}(x; \mathbf{a})$ и $S(x) \approx P_{11\downarrow 3}(x; \mathbf{r}_i)$. Найдем оценки \hat{r}_{ij} , используя модель в форме (7) из условия

$$\frac{\partial}{\partial \hat{r}_{ij}} \sum_{k=1}^{300} [\tilde{S}_k - \sum_{i=0}^3 \sum_{j=1}^3 b_{ijk} \hat{r}_{ij}]^2 = 0.$$

где $b_{ijk} = Q^i(\tau_k) w_j(\tau_k), \tau_k = x_k - x_0.$

Рузультаты сглаживания (оценка \hat{S}_B , гистограммы остатков и невязка $S(x) - \hat{S}_B(x)$) показаны на рис. 2 слева. Справа приведены графики $b_{ij}(x; \alpha, \beta)$.

Рис. 2: Сглаживание полиномом $P_{11\downarrow3}(x;\mathbf{r}_i)$

Разность оценок, полученных для обеих моделей, показана на графике (рис. 3, справа). Слева – графики парабол $\hat{\Pi}_i(x; \alpha, \beta, \mathbf{r}_i), Q(x; \alpha, \beta)$ и оценки $\hat{r}_{1\nu}$ для $\hat{\Pi}_1$. Точки пересечения $\hat{\Pi}_i$ с вертикалями $x = x_{\nu}, \nu = \alpha, \beta, 0$ соответствуют координатам $\hat{\mathbf{r}}_i$: $\hat{\mathbf{r}}_0 = [0.0920750834, 0.0410621063, 0.188424410]_{res}^T$,

 $\hat{\mathbf{r}}_1 = [0.0178529547, 0.0101572284, 0.020526047]^T,$ $\hat{\mathbf{r}}_2 = [0.0026828853, 0.0004179276, 0.001036583]^T,$ $\hat{\mathbf{r}}_3 = [0.0001866736, 0.0000137170, 0.000017215]^T.$ Для $P_{11}(x; \mathbf{a})$ данные обрабатывались процедурой *LeastSquare*() из пакета Марle.

Рис. 3: $\Pi_i(x; \alpha, \beta, \mathbf{r_i})$ и $\hat{S}_B(x) - \hat{S}_C(x)$

Устойчивость метода к ошибкам характеризуется числом обусловленности нормальной матрицы $\mu(\mathbf{A}) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$ и значениями определителей $|\mathbf{A}|$ и $|\mathbf{A}^{-1}|$, которые приведены в табл.1. В последних двух строках таблицы находятся

Таблица 1: Расчетные величины для матриц С и В

Величина	$\mathbf{C}_{12 imes12}$	$\mathbf{B}_{12 imes12}$
$ \mathbf{A} $	$4,9564601 \cdot 10^{63}$	$1,4551473\cdot 10^{49}$
$ A^{-1} $	$2,01524 \cdot 10^{-64}$	$6,8721565 \cdot 10^{-50}$
$\mu(\mathbf{A})$	$9,0253085\cdot 10^{12}$	$1,6562740\cdot 10^{7}$
$ ho_e$	0,02647408101	0,02647406692
dev	0,3807327671	0,3807322134

значения глобальной относительной ошибки

$$\rho_e = \sqrt{\sum_{i=1}^{N} (\tilde{S}_i - \hat{S}_i)^2} / \sqrt{\sum_{i=1}^{N} \tilde{S}_i^2},$$

и модуль максимального отклонения оценки от истинной кривой $dev = max\{|S_i - \hat{S}_i|\}\}_{i=1}^N$ для каждой модели. Из табл. 1 видно, что при $\rho_e(\mathbf{C})/\rho_e(\mathbf{B}) \approx 1$ и $dev(\mathbf{C})/dev(\mathbf{B}) \approx 1$, отношение $\mu(\mathbf{C})/\mu(\mathbf{B}) \approx 5,449 \cdot 10^5$, а $|\mathbf{C}|/|\mathbf{B}| =$ $3.406157009 \cdot 10^{14}$ и $|\mathbf{C}^{-1}|/|\mathbf{B}^{-1}| = 2.932474815 \cdot$ 10^{-15} , т.е. вычисления для модели с матрицей $\mathbf{B}_{12\times 12}$ более устойчивы к опибкам.

Рис. 4: Сглаживание МГК ("Гусеница") и МБЭ

Сравнение результатов сглаживания, полученных методом главных компонент [8] (МГК, пакет "Гусеница") и МНК (модель МБЭ с матрицей $B_{12\times12}$) на одном и том же наборе точек (N = 1000) дало хорошее согласие и приведено на рис.4. Справа, в верхней части рисунка показан график точечных оценок в системе осей (МБЭ,ГУС).

5. Рекурсивное вычисление $\hat{\mathbf{r}}$. Представление полинома в форме $P_{n \perp k}(\cdot)$ позволяет

снизить вычислительную сложность алгоритмов. Покажем это на примере рекурсивного РНКвычисления $\hat{\mathbf{r}}_1$ для модели $P_{5\downarrow1}(x; \hat{\mathbf{r}}_0, \mathbf{r}_1)$ (11) с предварительным оцениванием $\hat{\mathbf{r}}_0$ и нормальной матрицей размерности 3×3 .

Трансформация (10) $\tilde{f}_i \xrightarrow{\tilde{r}_0} \tilde{u}_i$ переводит модель с шестью коэффициентами в модель (11) с тремя неизвестными коэффициентами r_i :

$$u(x) \approx \sum_{j=1}^{3} b_j r_j$$
, где $b_j = Q w_j$. (12)

При вычислении оценки $\hat{\mathbf{r}} \equiv \hat{\mathbf{r}}_1$ по РНКалгоритму на вход подается временная последовательность точек $\{\tilde{f}_i\}_{i=1,2,...}$, упорядоченных по $x, (x_i < x_{i+1})$ с неизвестным заранее N.

В работе [6] для оценки свободного параметра θ кубической модели использовался режим вычисления по параметрам, где α и β синхронно изменялись с x_n при фиксированном x_0 . Здесь рассматривается схема, в которой все параметры фиксированы, а оценки реперных ординат $\hat{\mathbf{r}}_0$ предварительно вычисляются по 2J + 1 соседним ординатам в виде $\hat{r}_{0\nu} = \frac{1}{2J+1} \sum_{j=-J}^{J} \tilde{f}_{j}, \nu = \alpha, \beta, 0$. Полученную оценку $\hat{\mathbf{r}}_0$ используем для трансформации данных: $\tilde{u}_i = \tilde{f}_i - \hat{r}_{0\alpha} w_{1i} - \hat{r}_{0\beta} w_{2i} - \hat{r}_{00} w_{3i}, \quad i = \overline{1, N}.$

При вычислении \tilde{u}_i ошибки преобразуются по формуле $e_{u_i} = (e_i - e_{\alpha}w_{1i} - e_{\beta}w_{2i} - e_0w_{3i})$, где e_i – ошибка f_i , а e_{α} , e_{β} и e_0 – ошибки в $\hat{r}_{0\nu}$.

В адаптивной процедуре вычисления оценки параметров на текущем шаге используется значение ошибки ε_n , полученное на предыдущем шаге [9].

При рекурсивном вычислении оценки $\hat{\mathbf{r}}^{(n)}$ на вход РНК-алгоритма поступает последовательность { $\tilde{u}_1, \tilde{u}_2, ...$ } с ошибкой на выходе *n*-го шага $\varepsilon_n = \tilde{u}_n - \mathbf{b}_n^T \hat{\mathbf{r}}^{(n-1)}, \quad n = 1, 2, ...$. Критерием оптимальности $\hat{\mathbf{r}}^{(n)}$ служит условие $\sum_{k=1}^n \varepsilon_k^2 \to \min_{\hat{\mathbf{r}}}$.

Алгоритм рекурсивного вычисления оценки $\hat{\mathbf{r}}^{(n)}$ для модели (12) на *n*-м шаге запишется в виде

$$\begin{split} \tilde{u}_n &= \tilde{f}_n - \hat{\Pi}_{0n}, \\ \mathbf{k}_n &= \mathbf{\Omega}_{n-1} \mathbf{b}_n [1 + \mathbf{b}_n^T \mathbf{\Omega}_{n-1} \mathbf{b}_n]^{-1}, \\ \hat{u}_n &= \mathbf{b}_n^T \hat{\mathbf{r}}^{(n-1)}, \\ \varepsilon_n &= \tilde{u}_n - \hat{u}_n, \\ \hat{\mathbf{r}}^{(n)} &= \hat{\mathbf{r}}^{(n-1)} + \mathbf{k}_n \varepsilon_n, \\ \mathbf{\Omega}_n &= \mathbf{\Omega}_{n-1} - \mathbf{k}_n \mathbf{b}_n^T \mathbf{\Omega}_{n-1}, \\ \mathbf{\Omega}_0 &= \sigma \mathbf{I}, \ \hat{\mathbf{r}}^{(0)} &= 0, n = 1, 2, \dots \end{split}$$

где **I** – единичная матрица, $\tilde{\mathbf{u}}_n$ – вектор данных размерности $n \times 1$, $\mathbf{b}_n = [Q_n w_{1n}, Q_n w_{2n}, Q_n w_{3n},]^T$, $\boldsymbol{\Omega}_n = [\mathbf{B}_n^T \mathbf{B}_n]^{-1}$

размерности 3 × 3, \mathbf{B}_n – матрица значений базисных функций \mathbf{b}_n размерности $n \times 3$, $\mathbf{k}_n = [K_1, K_2, K_3]^T$ – коэффициент усиления.

Пример 2. Понижение вычислительной сложности PHK-алгоритма с использованием модели $P_{5\downarrow1}(\cdot)$ покажем на примере обработки выборки точек $\{\tilde{S}_i\}_{i=1}^{500}, \sigma = 0, 3, h = 0,0088$, рассеянных вокруг полинома $P_5 = 0,03(x^5 + 3,5x^4 - 12,71x^3 - 22,725x^2 + 29,325x + 46,41), x \in [-1,7,2,7].$

Оценка получена усреднени- \hat{r}_0 ем по 11 соседним точкам для α = = $0,01, \beta$ 2, 1: \hat{r}_0 $-1,55, x_0$ = = $[0, 1976281418, -0, 06080134616, 1, 312190607]^T$, и на ее основе исходные данные преобразованы по формуле $\tilde{u}_i = \tilde{S}_i - \mathbf{w}^T(x_i; \alpha, \beta) \hat{\mathbf{r}}_0$ (рис. 5). Устойчивость такого преобразования подтверждается совмещенными гистограммами ошибок $e_{\tilde{s}}$ и $e_{\tilde{u}}$ на рис. 5. Там же показаны графики базисных функций $b_i(x)$. Процесс вычисления

Рис. 5: Входные (\tilde{S}) и модифицированные (\tilde{u}) данные, $\hat{\Pi}_0$ и оценки \hat{S} , \hat{u} (слева). Базисные функции b_j (справа)

оценки $\hat{\mathbf{r}}$ показан на графиках траекторий $r_j, j = \overline{1,3}$ (рис. 6, слева). Графики коэффициентов усиления K_j и гистограммы остатков для исходных \tilde{S} и преобразованных \tilde{u} данных приведены справа на рис. 6, а графики коррекции ошибок $\varepsilon_n = \tilde{u}_n - \hat{u}_n$ – на рис. 7. Полученный в результате таких расчетов вектор $\hat{\mathbf{r}} = [-0, 2780076451, 0, 1681186476, -0, 2507904166]^T$ вместе с $\hat{\mathbf{r}}_0$ используются для вычисления окончательной оценки в виде $\hat{S}(x) = \mathbf{w}^T \hat{\mathbf{r}}_0 + Q(x)\mathbf{w}^T \hat{\mathbf{r}}$.

Рис. 6: Графики траекторий $\hat{r}_{i}^{(n)}$ и K_{jn}

Как отмечается в [9], оценка вычислительной сложности РНК-алгоритма составляет $2,5m^2 + 4m$ арифметических операций на один шаг итерации (m – число коэффициентов полинома), т.е.

вычислительная сложность возрастает пропорционально квадрату порядка модели, что затруднительно для приложений в случае аппроксимации полиномами степени выше трех. В на-

Рис. 7: Коррекция ошибок $K_{jn}\epsilon_n$

шем примере путем редукции модель 6-го порядка приведена к модели с тремя неизвестными коэффициентами, и оценка ее вычислительной сложности, без учета операций, затраченных на трансформацию данных $\tilde{f}_i \stackrel{\hat{\mathbf{r}}_0}{\longrightarrow} \tilde{u}_i$, составляет $2.5 \times 3^2 + 4 \times 3 \approx 35$ операций на один шаг против 114 для модели с 6-ю кэффициентами, т.е. число операций уменьшается более чем в 3 раза, что делает алгоритм пригодным для практических применений.

Заключение. Предложенный метод представления канонического полинома базисными элементами (МБЭ) повышает вычислительную эффективность алгоритмов полиномиальной аппроксимации функций и сглаживания экспериментальных данных. Идея МБЭ состоит в новом координатно-параметрическом представлении полинома тремя квадратичными (w_1, w_2, w_3) и одной кубической (Q) параболами – *базисными элементами*. Четыре базисных элемента определяются координатами четырех точек по специальному правилу сложного отношения и зависят от непрерывных параметров регулирования – α, β, x_0 .

Коэффициенты модели определяются по значениям $f, f^{(i)}$, а также по значениям базисных элементов и их производных. При полиномиальной аппроксимации функций метод использует меньший порядок производных по сравнению с формулой Тейлора, обеспечивает необходимую точность вычислений, и расширяет границы применения существующих методов обработки данных за счет:

• изменения конструкции полинома (модель);

• введения параметров регулирования (гибкость);

• трансформации данных (понижение сложности);

 сокращение числа коэффициентов полинома (редукция порядка модели);

 уменьшения числа обусловленности нормальной матрицы (устойчивость вычислений);

• возможности вычислений по параметрам (выбор режима) и др.

Перечисленные возможности метода подтверждены численными экспериментами путем сравнения МНК-результатов обработки для каждой модели, а также сравнением с результатами обработки одной и той же выборки данных методом МГК ("Гусеница").

Ключевой момент использования МБЭ на практике состоит в адекватном выборе параметров α, β, x_0 . Параметр сдвига x_0 позволяет выбирать положение окна с данными, тогда как его ширина (база) определяется параметрами α и β , от которых зависят базисные элементы и их производные, влияющие на уровень подавления ошибок при трансформации данных и на точность аппроксимации. Вопрос оптимального выбора параметров в работе не обсуждается и пока остается открытым. Рекомендуется выбирать α и β по разные стороны от x_0 и вблизи границ промежутка (окна).

Автор выражает благодарность Ч. Тороку за полезные дискуссии по теме данной работы.

Работа выполнена при поддержке гранта Полномочного представителя Словакии в ОИЯИ.

Список литературы

- Дж. Х. Уилкинсон. Алгебраическая проблема собственных значений, М:, Наука, 1970.
- [2] Дж. Себер. Линейный регрессионный анализ, М., Мир, 1980.

- [3] Н.Д. Дикусар. Дискретные проективные преобразования на координатной плоскости. //Математическое моделирование, 10, 3, 1991, с. 50-64.
- [4] N.D. Dikoussar. Function parametrization by using 4-point transforms, //Comput. Phys. Commun. 99(1997), c. 235-254.
- [5] Н.Д. Дикусар. Метод базисных элементов в задачах полиномиальной аппроксимации и сглаживания. Препринт ОИЯИ, Р11-2009-123, Дубна, (2009).
- [6] Н.Д. Дикусар, Ч. Торок. Автоматический поиск узлов для кусочно-кубической аппроксимации. //Математическое моделирование, 18, 3, (2006), с. 23-40.
- [7] N.D. Dikoussar. Four-Point Transformation Methods in Approximation and the Smoothing Problems, //Physics of Particles and Nuclei Letters, 2008, Vol. 5, No. 3, pp. 317-323.
- [8] F. Alexandrov, N. Golyandina. 5th St.Petersburg Workshop on Simulation, St.Peterb., June 2005. Proc. of the 5th St.Petersburg Workshop on Simulation. SPb.: 2005, pp. 45IJ50. ISBN5-9651-0102-3.
- [9] Б. Фридлендер. Адаптивные алгоритмы для фильтров с конечной импульсной характеристикой. /Ред. К.Ф.Н. Коуэн, П.М. Грант. Адаптивные фильтры, М.; Мир, 1988, с. 45-81.